How we saved over $700/month by switching from Carta to Google Drive

Carta is the Gold Standard for startups to keep their CAP Table, but at a price.

One of my companies hasn’t really raised any money, but we have a 50+ stakeholders do to a merger and employee options. We execute maybe 2-3 documents per year related to capital. So the $8,400 annual price of Carta cost us about $4,000 per transaction that we did. Obviously, that is absurd.

We ended up downloading all of the reports and PDFs of all existing options. And added some instructions for what we need to do when new options are granted, exercised, etc. We save the CAP table and related documents in a Google Drive (that we already pay for), and ended up saving $8,400+ per year!

I understand that there are a few other things, such as 409A valuations and peace of mind that come with having a professional software like Carta manage your CAP table, but the savings, for us, are an easy trade-off.

How Do Clients Securely Connect to SSL & HTTPS Servers?

This question arose from Steven Chu on my previous post about MySQL SSL Connections without Client Certificates. How is the client able to securely connect to a server using SSL if it doesn’t already know or trust the Server Certificate?

It is important to understand that there are a few different, interrelated topics here. All of these involve SSL and certificates, but in differing ways, so they are often conflated. Secure communication over SSH shares the same concepts, but has different mechanisms.

  1. Encryption of the traffic between client and server.
  2. Verification that the server is who the client believes it to be.
  3. Authentication of the client to the server.

For SSL and HTTPS communication, the first two concepts are accomplished together because there is no point in communicating securely with a remote party if you can’t verify that the remote party is who they claim to be and that there isn’t a “Man in the Middle” able to intercept the secure traffic.

You actually communicate securely with unknown servers all of the time. When you loaded this web page, your browser didn’t know anything about www.brandonchecketts.com beforehand. Same thing when you load your bank’s website. You never configured your browser specifically to trust their website. So how is it able to verify that it is actually your bank, and not an attacker who is impersonating your bank?

Certificate Authorities

Anybody can create an SSL Certificate with any name on it. In my SSL Certificate Notes post, you can find instructions for creating an SSL certificate. Note that you simply type in the name for the certificate. So you could attempt to create a certificate for any host you care to try. However, an essential part of the process is the Signing of the Certificate. You can self-sign a certificate with any name on it. But if you want your certificate to be recognized and trusted by anybody else, you need to have a recognized Certificate Authority (CA) sign it. If you were to try to create a certificate for www.google.com, no Certificate Authority is going to sign that since you can’t validate that you are authorized to create certificatesnobody else in the world is going to trust it.

When a Certificate Authority signs a certificate, it is their job to verify that the certificate owner is who they claim to be in some way. On the public internet, that is largely done through DNS or Email validation. For example, on this site, I use a certificate issued by Amazon Web Services. In order obtain that certificate, I had to verify that I own the domain. Since the domain is also hosted at AWS, it is quite easy for me to create the DNS records for verification, and AWS can validate it within seconds. I couldn’t, for example, validate a certificate that was for ‘www.google.com’. I’d be unable to validate it with any certificate authority since I can’t make the required DNS entries or receive emails to the required email addresses for google.com.

Extended Validation certificates, offered by some Certificate Authorities, and recognized by some web browsers with a different color banner, often have additional verification steps other than just DNS or Email.

Intermediate Certificates and Multiple layers of Certificate Authoritiees

When a certificate is signed by a recognized Certificate Authority, your client can trust it, because it trusts the Certificate Authority. On the public Internet, most of the time there are multiple layers of Certificate Authorities.

On OSX, you can find the list of root certificates it trusts in the “Keychain Access” system app, in the “System Roots” section. On an Ubuntu or Debian Linux system, the trusted certificates are files that exist or are symlinked in `/etc/ssl/certs`. These systems have dozens to hundreds of certificates that they trust. Look closely and you’ll see that most of them expire 10+ years into the future. These “Root” certificates are highly protected and usually don’t directly sign certificates. The Certificate Authority will often delegate access to intermediate authorities with their own keys that can further sign certificates.

In Chrome, you can click the lock icon next to the URL, and find details about the certificate, including the intermediate certificates. As of the writing of this post, you can see that the SSL Certificate issued to brandonchecketts.com is issued by “Amazon”, which is trusted by the root certificate named “Amazon Root CA 1”. I can find that root certificate in the list of certificates trusted by my OSX system.

Client Authentication

I mentioned the third step above about the client authenticating to the server. In many cases, like this website, there is no need for the client to authenticate to the server since the content is public and intended to be viewed anonymously. If authentication is required, for instance to create a new post, then I simply log in with a username and password entered of the HTTPS connection. Same as you do every day.

Many well-meaning articles about generating SSL Certificates for services other than HTTPS often mention creating an SSL client certificate. The Client Certificate is then provided to the server so that the server can validate the client is who they claim to be. The Client Certificate is simply an alternate (often thought of as “more secure”) method of authenticating than a username and password, or sometimes even in addition to a username and password. In practice, I’ve seen that usernames and passwords transmitted over an encrypted connection are very common, well understood, and just as secure as using an SSL Client Certificate.